CS 188: Artificial Intelligence Spring 2010

Lecture 13: Probability 3/2/2010

Pieter Abbeel - UC Berkeley
Many slides adapted from Dan Klein.

Announcements

- Upcoming
- **new** Tomorrow/Wednesday: probability review session - 7:30-9:30pm in 306 Soda
- P3 due on Thursday (3/4)
\rightarrow W4 going out on Thursday, due next week Thursday (3/11)
- Midterm in evening of $3 / 18 \subset$

Today

- We're almost done with search and planning!
\rightarrow - MDP's: policy search wrap-up
- Next, we'll start studying how to reason with probabilities
- Diagnosis
- Tracking objects
- Speech recognition
- Robot mapping
- ... lots more!

Third part of course: machine learning

MDPs recap

- MDP recap: (S, A, T, $\left.\underset{R}{ }, \underline{S_{0}}, \underline{\gamma}\right)$

$$
\in \mathbb{R}^{\sqrt{2}}-\mathbb{R}^{1} \mathbf{p l}^{-1} \operatorname{sics} \quad \in(0,1)
$$

- In small MDPs: can find $\mathrm{V}(\mathrm{s})$ and/or $\mathrm{Q}(\mathrm{s}, \mathrm{a})$
$\rightarrow=$ Known T, R : value iteration, policy iteration
\rightarrow. Unknown T , R: Q learning
- In large MDPs: cannot enumerate all states

Function Approximation
$\rightarrow Q(s, a)=\underline{w}_{1} \underline{f_{1}(s, a)}+\underline{w}_{2} f_{2}(s, a)+\ldots+\underline{w}_{n} f_{n}(s, a)$

- Q-learning with linear q-functions:

Ctransition $=\left(s, a, r, s^{\prime}\right)$
\rightarrow difference $=\left[\underline{\gamma+\underset{a^{\prime}}{ } \widetilde{m a x}^{\prime} Q\left(s^{\prime}, a^{\prime}\right)}\right]-\underline{Q(s, a)}$
$Q(s, a) \leftarrow \underline{Q(s, a)+\alpha}$ [difference]
$\rightarrow \quad w_{i} \leftarrow w_{i}+\alpha$ [differénce] $f_{i}(s, a) \quad$ Approximate Q's

- Intuitive interpretation:
\rightarrow Adjust weights of active features
- E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Policy Search Idea

\rightarrow Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best

- Solution: learn the policy that maximizes rewards rather than the value that prediets rewards

- This is the idea behind policy search, such as what controlled the upside-down helicopter

Toddler (Tedrake et al.)

- Simplest policy search: $\left\{w_{i}\right\}$
- Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before
- Problems:
- How do we tell the policy got better?
- Need to run many sample episodes! ${ }^{\text {- }}$
- If there are a lot of features, this can be impractical \rightarrow Mostly applicable when prior knowledge allows one to choose a representation with a very small number of free parameters to be learned

Take a Deep Breath...

- We're done with search and planning!
- Next, we'll look at how to reason with probabilities
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so ${ }^{\circ}$ make sure you go over it now!
- Probability review session tomorrow 7:30-9:30pm in 306 Soda --- you will benefit from it for many lectures/assignments/exam questions if any of the material we are about to go over today is not comoletelv triviall

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
$\rightarrow R=$ Is it raining?
$\rightarrow D=$ How long will it take to drive to work?
$\rightarrow \mathrm{L}=$ Where am I ?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
- B in $\{$ true, false $\}$ (sometimes write as $\{\underline{+} r, \neg-7\}$)
- Din $[0, \infty)$
- Lin possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome): $n=2, d=2$

$$
\begin{aligned}
& \rightarrow P\left(\underline{X_{1}}=x_{1}, \underline{X_{2}}=x_{2}, \ldots \underline{X_{n}}=x_{n}\right) \\
& \longrightarrow P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Size of distribution if n variables with domain sizerd?
- Must obey:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
$$

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$

- For all but the smallest distributions, impractical to write out

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

Normalization Trick

- A trick to get a whole conditional distribution at once:
- Select the joint probabilities matching the evidence
- Normalize the selection (make it sum to one)

- Why does this work? Sum of selection is P((exidydeflem) (P(T), here)

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, P \nsim C\right.}{P\left(x_{2}\right)}+{ }^{n} \frac{P\left(P \cdot\left(4, x_{2}\right)\right)}{\sum_{x_{1}} P P\left(x x_{1} \mid+x_{2}()^{\prime}, n\right)}
$$

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Marginal distributions are sub-tables which eliminate variables

- Marginalization (summing out): Combine collapsed rows by adding

\downarrow				$P(T)$		
			T	P		
T	W	P		hot	0.5	
hot	sun	0.4		$P(t)=\underbrace{\sum_{s} P(t, s)}$	cold	0.5
hot	rain	0.1	$P(W)$			
cold	sun	0.2	$P(s)=\sum_{t} P(t, s)$		W	P
cold	rain	0.3		sun	0.6	
				rain	0.4	

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Conditional Distributions						
- Conditional distributions are probability distributions over some variables given fixed values of others						
Conditional Distributions			Joint Distribution			
$P(W \mid T) P(\underline{W} \mid \underbrace{T}=h o t)$			$P(T, W)$			
$\frac{\overparen{E}}{E}$	W	P	T	W	P	
	sun	0.8	hot	sun	0.4	
	rain	0.2	hot	rain	0.1	
	$W \mid T$	cold)	cold	sun	0.2	
			cold	rain	0.3	
	W	P				
	sun	0.4				
	rain	0.6				5

